Code No: 80H05

MR18(2018-19)

HT.NO:



#### MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

Maisammaguda, Dhulapally, (Post Via Kompally), Secunderabad-500100.

#### B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2022

**SUBJECT: Management Fundamentals** BRANCH: COMMON TO EEE, ECE & IT

Time: 3 hours Answer all questions Max. Marks: 70

5X14M=70 M

| Q. NO. | estions carries                                                      |           |          |            | ESTIO    | NS       |          |        |          |        | MARKS | *BT<br>LEVEL | СО |
|--------|----------------------------------------------------------------------|-----------|----------|------------|----------|----------|----------|--------|----------|--------|-------|--------------|----|
| 1.     | a) Define Ma                                                         | nageme    | ent? W   | rite its I | unctio   | ns.      |          |        |          |        | 7     | L3           | 1  |
|        | b) Explain the                                                       |           |          |            |          |          |          |        |          |        | 7     | ГЭ           | 1  |
|        |                                                                      |           |          |            | OR       |          |          |        |          |        |       |              |    |
| 2.     | a) Explain va                                                        |           |          |            |          |          |          |        |          |        | 7     | L2           | 1  |
|        | b) Explain th                                                        | ne differ | rence b  | etween     | McGı     | egor's   | theory   | X and  | theory   | Y.     | 7     | L2           | 1  |
| 3.     | a) Why we no                                                         | eed to F  | Plan? E  | xplain s   | steps in | proces   | ss of pl | anning | 5.       |        | 7     | L2           | 2  |
|        | b) Explain me                                                        | odern o   | rganiz   | ational    | structu  | re of or | ganiza   | tion.  |          |        | 7     | LZ           |    |
|        |                                                                      |           |          |            | OR       |          |          |        |          |        |       |              |    |
| 4.     | a) Distinguisl                                                       | h betwe   | en line  | and sta    | aff orga | nizatio  | n.       |        |          |        | 7     | L3           | 2  |
|        | b) What is pla                                                       |           |          |            |          | g?       |          |        |          |        | 7     | 103          |    |
| 5.     | a) Define HR                                                         |           |          |            |          |          |          |        |          |        | 7     | L2           | 3  |
|        | b) Discuss va                                                        | ırious p  | rincipl  | es of or   |          | tion.    |          |        |          |        | 7     |              |    |
|        |                                                                      |           |          |            | OR       |          |          |        |          |        |       |              |    |
| 6.     | a) Explain the                                                       |           |          |            |          |          |          |        |          |        |       | L2           | 3  |
|        | i) R Char                                                            |           | ,        | Chart.     |          |          |          |        |          |        | 7     |              |    |
|        | b) Define the                                                        |           |          |            |          |          |          |        |          |        | 7     |              |    |
| 7.     | a) What is m                                                         | ean by    | work s   | tudy? V    | Vrite ba | asic pro | cedure   | invol  | ved in r | nethod |       |              | ١. |
|        | study.                                                               |           |          |            |          |          |          |        |          |        | 7     | L2           | 4  |
|        | b) Identify th                                                       | e steps   | involv   | ed in pi   |          | of conti | rolling. |        |          |        | 7     |              |    |
|        |                                                                      |           |          |            | OR       |          |          |        |          |        |       |              |    |
| 8.     | a) Discuss E                                                         |           |          |            |          |          |          |        |          |        | 7     | L2           | 4  |
|        | b) Illustrate                                                        |           |          |            |          |          |          |        | _        |        | 7     |              | -  |
| 9.     | a) Outline the                                                       |           |          | -          | _        |          |          |        |          |        | 7     | L3           | 5  |
|        | b) Explain th                                                        | he steps  | s involv | ed in c    | apabili  | ty mati  | irity m  | odei.  |          |        | 7     |              |    |
|        |                                                                      |           |          |            | OR       |          |          |        |          |        |       |              |    |
| 10.    | a) Draw network and identify critical path for the following data:   |           |          |            |          |          |          |        |          |        |       |              |    |
|        | Activity                                                             | 1-2       | 2-3      | 2-4        | 2-5      | 3-5      | 3-6      | 4-5    | 4-6      | 5-6    | 7     | L4           | 5  |
|        | Time                                                                 |           | 2        | ١,         | 21       | _        | _        | _      | 1        | -      |       |              |    |
|        | (Days)                                                               | 5         | 3        | 1          | 6        | 2        | 2        | 3      | 4        | 5      |       |              |    |
|        | b) What is the importance of network diagrams in project management? |           |          |            |          |          |          |        |          |        |       |              |    |
|        | Explain List                                                         |           |          |            |          | _        | _        |        |          |        |       |              |    |

<sup>\*</sup>Bloom's Taxonomy Level (BT Level): L1-Remember, L2- Understand, L3- Apply, L4- Analyse, L5- Evaluate, L6- Create.

Code No: 80219

MR18(2018-19)

HT.NO:



## MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

Maisammaguda, Dhulapally, (Post Via Kompally), Secunderabad-500100.

#### B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2022

**SUBJECT: Power System Analysis and Control** 

**BRANCH: EEE** 

Time: 3 hours

Max. Marks: 70

Answer all questions

5X14M=70 M

| Q.NO. | uestions carries equal marks  QUESTIONS                                                                                                                          | MARKS | *BT<br>LEVEL | CO |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|----|
| 1.    | What is primitive network matrix and represent its forms? Prove Y <sub>bus</sub> = A <sup>t</sup> [y]A using singular transformation.                            | 14    | L2           | 1  |
|       | OR                                                                                                                                                               |       |              |    |
| 2.    | Form Y bus for the network by direct inspection method:  Element Positive sequence reactance  E-A 0.04                                                           | 14    | L3           | 1  |
|       | E-B 0.05<br>A-B 0.04<br>B-C 0.03                                                                                                                                 |       |              |    |
|       | A-D 0.02<br>C-F 0.07                                                                                                                                             |       |              |    |
| 2     | D-F 0.10                                                                                                                                                         | 14    | L2           | 2  |
| 3.    | Draw the flow chart for decoupled method and explain.                                                                                                            | 14    | LZ           |    |
|       | OR                                                                                                                                                               |       |              |    |
| 4.    | Obtain the voltage at bus 2 for the system shown in figure below using Gauss Seidel method if $V_1=1 \perp 0^{\circ} pu$ .                                       | 14    | L3           | 2  |
|       | $S_{01}$ $Z = j 0.5$ $S_{02} = 0.5 + j 1$                                                                                                                        |       |              |    |
| 5.    | Derive the equation for fault current and line to ground voltages during single line to line fault using symmetrical components.                                 | 14    | L3           | 3  |
|       | OR                                                                                                                                                               |       |              |    |
| 6.    | For the system shown in figure below. A LLG fault occurs at point F. Find fault current.                                                                         | 14    | L4           | 3  |
|       | x₁=x₂=0.3; x₀=0.5   3€   ○ Y₁ x₁=0.1                                                                                                                             |       |              |    |
|       | $x_1 = 0.1$ $x_2 = 0.1$ $x_0 = 0.05$ $x_1 = x_2 = x_0 = 0.25$ $x_1 = x_2 = x_0 = 0.25$ $x_1 = 0.1$ $x_2 = 0.1$ $x_1 = x_2 = x_0 = 0.25$ $x_1 = x_2 = x_0 = 0.25$ |       |              |    |
| 7     | a) Explain the importance of stability analysis in power system planning and operation.                                                                          |       | L3           | 4  |
|       | b) Derive the swing equation for a single machine infinite bus system.                                                                                           | 7     | L4           | 4  |

| 8.  | Derive the solution of swing equation by modified Euler method.                                                                                                                                                                                                                                                                                                             | 14 | L4 | 4 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|
| 9.  | a) Two generators rated 200 MW and 400 MW are operating in parallel. The droop characteristics of their governors are 4 % and 5% respectively from no load to full load. Assuming that the generators are operating at 50 Hz at no load, how would a load of 600 MW be shared between them? What will be the system frequency at this load? Assume free governor operation. | 6  | L3 | 5 |
|     | b) Explain the governor modelling of a speed governor system with its block diagram.                                                                                                                                                                                                                                                                                        | 8  | L3 | 5 |
|     | OR                                                                                                                                                                                                                                                                                                                                                                          |    |    |   |
| 10. | Explain the proportional plus integral control of single are load frequency control.                                                                                                                                                                                                                                                                                        | 14 | L3 | 5 |

<sup>\*</sup>Bloom's Taxonomy Level (BT Level): L1-Remember, L2- Understand, L3- Apply, L4- Analyse, L5- Evaluate, L6- Create.



### MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

Maisammaguda, Dhulapally, (Post Via Kompally), Secunderabad-500100.

#### B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2022

SUBJECT: Utilization of Electrical Energy

BRANCH: EEE.

Time: 3 hours

Answer all questions

Max. Marks: 70

5X14M=70 M

All Questions carries equal marks MARKS \*BT CO O.NO. **QUESTIONS** LEVEL 7 L2 1 1... a) Explain in brief how heating is done in the following cases: ii) Induction heating i) Resistance heating, b) Explain seam welding and mention its applications. L3 1 OR 7 1.4 1 a) Distinguish between Direct Resistance heating and Indirect resistance 2. heating. 7 L2 b) Explain with neat sketches, the construction, working principle and application of Ajax Wyatt furnace. 2 a) Explain with a neat diagram, the principle of operation of a sodium 3. 7 L2 vapor lamp. Mention its use. b) A 500 W lamp having M.S.C.P of 800 is suspended 3m above the working plane. i) Illumination directly below the lamp at the working 7 plane. ii) Lamp efficiency iii) Illumination at a point 2.4 m away on the L3 horizontal plane from vertically below the lamp. 7 2 a) Explain with neat diagram and working of a Fluorescent tube. L2 4. b) Define and explain the terms illumination and illumination intensity 7 L2 in detail? 3 a) An electrical train weighting 400 tonnes moves up a gradient of 1% 5. with the following speed time curve: i) Acceleration of 1.5 kmphps for 25s, ii) Constant speed for 40s. 7 L3 iii) Coasting for 30s, iv) Braking at 3 kmphps to rest. Determine the specific energy consumption if tractive resistance is 50 N per tonne, rotational inertia 10%. Overall efficiency of the system 80%. b) Explain various methods of electric braking. State the conditions to be 7 L2 fulfilled for each method of braking. OR a) Explain in brief: (i) Power & energy output from driving axles, 7 L2 3 6. (ii) Specific energy & (iii) regenerative braking in traction motors. b) Explain the significance of speed time curves? And give its merits. L2 7 14 L4 For a trapezoidal speed-time curve of an electric train, derive expression 4 7. for maximum speed and distance between stops. OR

| 8.  | a) Define the term tractive effort. Derive the condition for tractive effort                                                                                                                                                                                                                                  |   |    | 4 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|---|
|     | required to balance the gravitational pull.                                                                                                                                                                                                                                                                   | 7 | L4 |   |
| -   | b) A train is required to run between the two stations 1.5 km apart at a schedule speed of 36 kmph, the duration of stop being 25 sec. The braking retardation is 3 kmphps. Assuming a trapezoidal speed/time curve, calculate the acceleration if the ratio of maximum speed to average speed is to be 1.25. | 7 | L2 |   |
| 9.  | a) List the advantages and disadvantages of electric vehicles                                                                                                                                                                                                                                                 | 7 | L2 | 5 |
|     | b) Compare different types of drives used in electric vehicles                                                                                                                                                                                                                                                | 7 | L2 |   |
|     | OR                                                                                                                                                                                                                                                                                                            |   |    |   |
| 10. | a) Dissect the environmental importance of EV and their social impacts                                                                                                                                                                                                                                        | 7 | L4 | 5 |
|     | b) Discuss the history of hybrid electric vehicles.                                                                                                                                                                                                                                                           | 7 | L2 |   |

\*Bloom's Taxonomy Level (BT Level): L1-Remember, L2- Understand, L3- Apply, L4- Analyse, L5- Evaluate, L6- Create.



# MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

Maisammaguda, Dhulapally, (Post Via Kompally), Secunderabad-500100.

# B.TECH IV YEAR I SEMESTER REGULAR EXAMINATIONS, JANUARY-2022

**SUBJECT: Electrical Hybrid Vehicles** 

BRANCH: EEE

Time: 3 hours

Max. Marks: 70

Answer all questions

5X14M=70 M

All Questions carries equal marks

| Q.NO. | QUESTIONS                                                                                                                | MARKS | *BT<br>LEVEL | СО |
|-------|--------------------------------------------------------------------------------------------------------------------------|-------|--------------|----|
| 1.    | a) Compare hybrid electric vehicles with Conventional IC Engine vehicles on various parameters.                          | 7     | L3           | 1  |
| 1.    | b) Explain the impact of modern drive trains on energy supplies.                                                         | 7     | L3           |    |
|       | OR                                                                                                                       |       |              |    |
| 2.    | a) Explain the social and environmental importance of Electric and Hybrid Electric Vehicles.                             | 7     | L2           | 1  |
|       | b) Describe the performance of Electric and Hybrid Electric Vehicles.                                                    | 7     | L2           |    |
| 3.    | a) Explain power flow control in Hybrid Electric Vehicle drive train topologies.                                         | 7     | L3           | 2  |
|       | b) Discuss the basic concepts of electric traction.                                                                      | 7     | L3           |    |
|       | OR                                                                                                                       |       |              |    |
| 4.    | Explain the parallel configurations of Hybrid Electric Vehicle drive train with neat diagram.                            | 14    | L3           | 2  |
| 5.    | a) Explain the four quadrant chopper control of dc motors used in hybrid electric vehicles.                              | 7     | L3           | 3  |
|       | b) Illustrate the configuration and control of induction motor drives used in hybrid electric vehicles                   | 7     | L2           | 3  |
|       | OR                                                                                                                       |       |              |    |
| 6.    | a) List out different types of rechargeable batteries considered for electric hybrid vehicles. Compare them in detail.   | 7 L3  |              | 3  |
|       | b) Explain the hybridization of various energy storage devices, its advantages and challenges.                           | 7     | L3           |    |
| 7.    | Explain briefly the electrical and mechanical constraints to be considered while sizing an electrical machine for HEV.   | 14    | L3           | 4  |
|       | OR                                                                                                                       |       |              |    |
| 8.    | a) Compare the performance of internal combustion engine (ICE) based                                                     | 7     | L3           |    |
|       | vehicle with hybrid electrical vehicle. b) Explain the sizing procedure of propulsion motor for electric hybrid vehicle. | 7     | L3           | 4  |
| 9.    | Explain different categories of energy management strategies in electric vehicles and hybrid electric vehicles.          | 14    | L4           | 5  |
|       | OR                                                                                                                       |       |              |    |
| 10    | a) Explain about Control Area Network (CAN) application to electrical vehicle.                                           | 7     | L4           | 10 |
| 10.   | b) State the functions of the communication network in Electric Vehicles.                                                | 7     | L4           | 5  |

<sup>\*</sup>Bloom's Taxonomy Level (BT Level): L1-Remember, L2- Understand, L3- Apply, L4- Analyse, L5- Evaluate, L6- Create.